2D Convection in a Plane-parallel Layer of an Ideal Gas

A.Neamvonk ${ }^{1}$, and G.Sarson ${ }^{2}$
${ }^{1}$ Department of Mathematics, Burapha University, Chonburi, 20131, Thailand
${ }^{2}$ School of Mathematics \& Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.

Abstract

Non-magnetic convection of an ideal compressible gas is considered in two dimensions to benchmark the code for the problems addressed which involve a rescaling of the thermodynamics from the problems originally addressed using the Pencil-code.

Keywords- non-magnetic convection, polytropic ideal gas, compressible fluid, dynamo benchmark

1. INTRODUCTION

We study the 2D non-magnetic convection of a plane-parallel layer of a compressible fluid (an ideal gas) heated from below, following Gough [2] and Spiegel [3]. Spiegel [3] presented linear equations for the onset of convection in a plane parallel layer of perfect gas. He also gave the appropriate definition of the Rayleigh number. Gough [2] applied the results of Spiegel [3] in calculating critical Rayleigh numbers and wavenumbers for different values of the layer depth and polytropic index of static atmosphere.

2. THEORY AND RELATED WORKS

A plane-parallel layer of compressible fluid with boundary conditions imposed at the top, $z_{2}=-0.1$ and bottom, $z_{1}=-1.1$. At the lower and upper boundary, temperature perturbations are fixed to be zero and free-slip velocity boundary conditions are used; however, the horizontal boundary condition is periodic. We adopt Cartesian coordinates (x, z) where x denotes the horizontal direction and z is height, and gravity, \bar{g}, is in the direction of negative z. Our system is composed of a convection zone of depth, $d=z_{2}-z_{1}$, embedded between two stable layers. Our study requires the implementation of more general scaling within the Pencil-Code (e.g. general choices of specific heat, c_{p}), compared to the scaling normally assumed ($c_{p}=1$, Gough [2]).

The hydrostatic, thermal equilibrium solutions satisfying $\nabla p / \rho=\bar{g}$ and $\nabla^{2} T=0$, for the plane layer considered here which are the pressure, density and temperature profiles

$$
\begin{equation*}
p_{0}=P z^{(m+1)}, \quad \rho_{0}=\frac{P}{R^{*} \beta_{0}} z^{m}, \quad T_{0}=\beta_{0} z \tag{1}
\end{equation*}
$$

where P and β_{0} are integration constants. The polytropic index, $m=\frac{g_{z}}{R^{*} \beta_{0}}-1$ where g_{z} is the acceleration due to gravity, $R^{*}=\frac{(\gamma-1)}{\gamma} c_{p}$ is the gas constant, $\gamma=\frac{c_{p}}{c_{v}}$ is the ratio of specific heats (or adiabatic index) and z is the local depth of the plane-parallel layer. The temperature gradient, $d T / d z$, is given by

$$
\begin{equation*}
\beta_{0}=\frac{\gamma}{\gamma-1} \frac{g_{0}(m+1)}{c_{p}} \tag{2}
\end{equation*}
$$

The initial vertical stratification is computed using polytropes of various indexes for

$$
\begin{equation*}
p \propto \rho^{1+1 / m} \quad \text { or } \quad \rho \propto T^{m} \tag{3}
\end{equation*}
$$

3. COMPUTATIONAL DETAILS

In the Pencil-Code, the conservation of mass equation is implemented using the log density as

$$
\begin{equation*}
\frac{D \ln \rho}{D t}=-\nabla \cdot \bar{u} \tag{4}
\end{equation*}
$$

We assume that all variables are periodic in the horizontal direction and adopt the following conditions at the upper and lower boundaries:

$$
\begin{equation*}
\frac{\partial u_{x}}{\partial z}=\frac{\partial u_{y}}{\partial z}=0 \quad\left(\text { and } u_{z}=0\right) \tag{5}
\end{equation*}
$$

The initial profile is specified as

$$
\begin{align*}
& T=\beta_{0}\left(z-z_{\infty}\right), \tag{6}\\
& \Phi=\left(z-z_{\infty}\right)\left(-g_{z}\right) \tag{7}
\end{align*}
$$

where Φ is a gravitational potential such that $\bar{g}=-\nabla \Phi$.

The definition of the Rayleigh number considered by Gough [2] and Spiegel [3] is

$$
\begin{equation*}
R_{a}=\frac{\left(g / T_{0}\right) \beta d^{4}}{\left(K / \rho_{0} c_{p}\right)\left(\mu / \rho_{0}\right)} \tag{8}
\end{equation*}
$$

where K is the thermal conductivity, μ is the shear viscosity, and β is the super adiabatic temperature gradient, $\beta=\beta_{0}-g / c_{p}$. And the Prandtl number is a dimensionless number approximating the ratio of kinematic viscosity and thermal diffusivity. It is defined as

$$
\begin{equation*}
P_{r}=\frac{v}{\chi}=\frac{\mu c_{p}}{K} \tag{9}
\end{equation*}
$$

The relations between various thermodynamic and hydrodynamic parameters considered for the cases $c_{p}=2.5$ and $c_{p}=1.0$ are required. The general relations for an ideal gas are given by

$$
\begin{aligned}
& c_{s}^{2}=\gamma R^{*} T=\gamma p / \rho=(\gamma-1) c_{p} T, \\
& e=\frac{R^{*}}{(\gamma-1)} T=\frac{c_{p}}{\gamma} T=c_{v} T, \\
& s-s_{0}=c_{v} \ln \left(p / \rho^{\gamma}\right),
\end{aligned}
$$

where e is the internal energy per unit mass of fluid, s is the specific entropy, $s=c_{p} / c_{v}$ and $R^{*}=c_{p}-c_{v}$, where c_{v} is the specific heat at constant volume given by Choudhuri [1]. This adiabatic sound speed, c_{s}, is obtained from perturbation arguments.

4. RESULTS AND DISCUSSION

Figure 1 shows the evolution of the root mean square (rms) of the vertical velocity ($\mathrm{u}_{\mathrm{rms}}$) and maximum velocity $\left(\mathrm{u}_{\max }\right)$ for $c_{p}=1.0$ and 2.5 over time. The velocity can clearly be seen in images of both $\mathrm{u}_{\mathrm{rms}}$ and $\mathrm{u}_{\max }$; the velocity increases sharply until $\mathrm{t}=3000 \mathrm{~s}$ and then slowly saturates. The time scale with $c_{p}=2.5$ is faster than $c_{p}=1.0$ by a factor of $\sqrt{20}=4.47214$. For $c_{p}=2.5$, when the Rayleigh number, R_{a}, was increased by a factor of 1.25 , the velocities grow dramatically until $\mathrm{t} \simeq 400$ s and reaches a stable state.

Figure 1: Plot of the root mean square of the vertical velocity (top) and the maximum velocity (bottom) with time, for $c_{p}=1.0$ and $c_{p}=2.5$.

Figure 2 shows vertical profiles of log density (top left), the velocity in the z-direction (top right), entropy (bottom left) and temperature (bottom right) for $c_{p}=1.0$ and 2.5. The dashed lines represent their initial profiles. The horizontal lines are the bottom boundary at $z=-1.1$ and top boundary at $z=-0.1$.

Figure2: Vertical profiles of \log density (top left), vertical velocity (top right), entropy (bottom left) and temperature (bottom right) over z , for $c_{p}=1.0$ and $c_{p}=2.5$.

Figure 3 shows a snapshot of entropy and velocity vectors for 2 D convection compared between $c_{p}=1.0(\mathrm{t}=$ 6000 s) and $c_{p}=2.5(\mathrm{t}=1400 \mathrm{~s})$ for Rayleigh number, $R_{a}=1189$ and wave number, $a_{c}=2.42$ (given by Gough [2]) with dark colors representing low entropy.

Figure3: A snapshot of velocity and entropy at time $t=6000 \mathrm{~s}$ and $\mathrm{t}=1400 \mathrm{~s}$, for comparable runs with $c_{p}=1$ and $c_{p}=2.5$

Table 1: Comparison of numerical values of different terms evaluated in the Pencil-Code
for the two scaling considered: $c_{p}=2.5$ and $c_{p}=1.0$

variable	value $\left(c_{p}=\mathbf{2 . 5}\right)$	value $\left(c_{p}=\mathbf{1 . 0}\right)$	ratio $\left(c_{p}=\mathbf{2 . 5} / c_{p}=\mathbf{1 . 0}\right)$
$\frac{d u}{d t}$ (constant gravity)	-20.0	-1.0	
$\bar{u} \cdot \nabla \bar{u}$	$2.8721 \mathrm{E}-5$	$1.4361 \mathrm{E}-6$	
$c_{s}^{2}\left(\nabla \ln \rho+1 / c_{p} \nabla s\right)$	-20.0	-1.0	20
c_{s}^{2}	10.3333	0.5167	
∇s	-0.80645	-0.3226	
$\bar{u} \cdot \nabla s$	$5.1733 \mathrm{E}-4$	$4.627 \mathrm{E}-5$	5
s	0.9123	0.3649	
T	6.2	0.775	
$\nabla \ln \rho$	-1.6129	-1.6129	
ρ	6.2	6.2	1
R_{a}	1189	1189	
P_{r}	1	1	

5. CONCLUSION

As can be seen in Table 1 the Rayleigh number at criticality at the middle of the layer for $c_{p}=2.5$ and $c_{p}=$ $1.0,1189$, is as given in Gough [2]. Therefore, the implementation of the general thermodynamics for convection problems has been satisfied and tested. The results of Gough [2] have been reproduced, and we are in a position to extend our calculations to consider 3D geodynamo problems.

6. ACKNOWLEDGEMENT

We would like to thank the Faculty of Science, Burapha University support through funds for research and also Dr.Graeme Sarson.

7. REFERENCES

[1] Choudhuri, A.R. "The Physics of Fluid and Plasmas: An introduction for Astrophysicists", Cambridge University Press, 1988.
[2] Gough, D.O., Moore, D.R., Spiegel, E.A. and Weiss, N.O. "Convective instability in. a compressible atmosphere II", Astrophys. J., 1976, vol. 206, pp. 536-542.
[3] Spiegel, E.A. "Convective Instability in a Compressible Athmosphere I", American Astro. Soc., 1964, vol. 141, pp. 1068-1090.

