Some Fixed Point Theorems for Generalized Contractive Mappings in Complete 2 – Metric Spaces

B. Baskaran¹ and C. Rajesh^{2,*}

¹Department of Mathematics Faculty of Engineering and Technology, SRM University, Vadapalani Campus, Chennai- 600 026, Tamil Nadu, India,

²Department of Mathematics Faculty of Engineering and Technology, SRM University, Vadapalani Campus, Chennai- 600 026, Tamil Nadu, India,

ABSTRACT— In this paper we introduce new concepts of Ciric type and JS type – contraction and established some fixed point theorems for such contraction in complete 2 – metric spaces.

Keywords—Fixed Point, Ciric type contraction, JS type contraction, Complete 2-metric space.

1. INTRODUCTION

The Banach contraction principle is the first important result on fixed points for contractive-type mappings, many authors have obtained interesting extensions and generalizations of the Banach contraction principle. The concept of Ciric contraction and JS-contraction have been introduced, respectively, by Ciric [6] and Hussain et al.[4]. In this paper we introduced Ciric type and JS type – contraction and established some fixed point theorems for such contraction in complete 2 – metric spaces.

2. PRELIMINARIES

Definition 2.1.([2, 3, 17])

A 2-metric space is a set X with a real valued non -negative function is defined on $X \times X \times X$ such that

- (i) for all x, y \in X, (x \neq y), there exists a point z \in X such that σ (x, y, z) \neq 0
- (ii) $\sigma(x, y, z) = 0$ if at least two of points x, y, z coincide.
- (iii) $\sigma(x, y, z) = \sigma(x, z, y) = \sigma(y, z, x) = \sigma(y, x, z)$
- (iv) $\sigma(x, y, z) \le \sigma(x, y, w) + \sigma(x, w, z) + \sigma(w, y, z)$

The function σ is called 2-metric for the space and (X, σ) is called a 2-metric space.

Definition 2.2 : ([6, 7])

```
Let (X, \sigma) be a 2 – metric space. A mapping T: X \to X is said to be Ciric type contraction. If there exist non negative numbers a, b, c, d with 0 \le a + 2d < 1, 0 \le b < 1, 0 \le c + d < 1, Such that \sigma(Tx, Ty, z) \le a \sigma(x, y, z) + b\sigma(x, Tx, z) + c\sigma(y, Ty, z) + d[\sigma(x, Ty, z) + \sigma(y, Tx, z)] for all x, y, z \in X, (1)
```

Definition 2.3: ([8])

Let (X, σ) be a 2 – metric space. A mapping $T: X \to X$ is said to be JS type contraction. If there exist $\psi \in \Psi$ and non-negative numbers. a, b, c, d with $0 \le a + 2d < 1, 0 \le b < 1, 0 \le c + d < 1$, Such that $\psi \left[\sigma(Tx, Ty, z)\right] \le \left[\psi(\sigma(x, y, z))\right]^a \left[\psi(\sigma(x, Tx, z))\right]^b \left[\psi(\sigma(y, Ty, z))\right]^c \left[\psi(\sigma(x, Ty, z) + \sigma(y, Tx, z))\right]^d$ for all $x, y, z \in X$, (2) Where Ψ is the set of all functions $\psi: [0, \infty) \to [1, \infty)$ satisfying the following conditions:

 (ψ_1) ψ is non-decreasing, and $\psi(t) = 1$ if and only if t = 0;

^{*}Corresponding author's email: rajesh_chinniah [AT] yahoo.com

- for each sequence $\{t_n\} \subset (0, \infty)$, $\lim_{n \to \infty} \psi(t_n) = 1$ if and only if $\lim_{n \to \infty} t_n = 0$; (ψ_2)
- there exist $r \in (0, 1)$ and $\ell \in (0, \infty]$ such that $\lim_{t \to 0^+} \frac{\psi(t) 1}{t^r} = \ell$; (ψ_3)
- $\psi(a+b+c) \le \psi(a) \psi(b) \psi(c)$ for all a, b, c > 0. (ψ_4)

Definition 2.4: ([17])

A sequence $\{x_n\}$ in X is said to be Cauchy sequence if for each $z \in X$,

$$\lim_{m \to \infty} \sigma(x_{n,} x_{m,} z) = 0$$

A sequence $\{x_n\}$ in X is convergent to an element $x \in X$ if for each $z \in X$,

$$\lim_{n\to\infty}\sigma(x_{n,}x_{,}z)=0$$

A complete 2 – metric space is one in which every Cauchy sequence in X converges to an element of X.

Definition 2.5. ([3])

A mapping T: $X \to X$ of a 2-metric space (X, σ) in to itself is said to be asymptotically regular at a point $x \in X$

if
$$\lim_{n \to \infty} \sigma(T^n x, T^{n+1} x, z) = 0$$
, $(z \in X)$.

3. MAIN RESULTS

We first introduce a new 2-metric ρ in a given 2-metric space (X, σ) induced by the metric σ , Define, [11], $\rho(x, y, z) = \eta(\sigma(x, y, z)) = \ln(\psi[\sigma(x, y, z)])$

For $\psi \in \Psi$ and $t \in [0, \infty)$, set $\eta(t) = \ln(\psi(t))$. Then $\eta : [0, \infty) \to [0, \infty)$ has the following properties:

- η is non-decreasing, and η (t) = 0 if and only if t = 0; (η_1)
- for each sequence $\{t_n\} \subset (0, \infty)$, $\lim_{n \to \infty} \eta(t_n) = 0$ if and only if $\lim_{n \to \infty} t_n = 0$; (η_2)
- $\eta (a + b + c) \le \eta (a) \eta (b) \eta (c)$ for all a, b, c > 0. (η_3)

Lemma 3.1: [11] Let (X, σ) be a 2-metric space then (X, ρ) is a 2-metric space,

where $\rho(x, y, z) = \eta(\sigma(x, y, z)) = \ln(\psi[\sigma(x, y, z)])$.

Proof: For each $x, y, z \in X$, we have

 $\sigma(x, y, z) = 0$ if at least two of points x, y, z coincide

this imply $\eta(\sigma(x, y, z)) = 0$ if at least two of points x, y, z coincide, by (η_1)

Hence

- $\rho(x, y, z) = \eta(\sigma(x, y, z)) = 0$; if at least two of points x, y, z coincide, (i)
- (ii) $\rho(x, y, z) = \eta(\sigma(x, y, z)) = \eta(\sigma(x, z, y) = \rho(x, z, y);$ similarly we get

$$\rho(x, y, z) = \rho(x, z, y) = \rho(y, x, z) = \rho(y, z, x) = \dots$$

(iii) $\rho(x, y, z) = \eta(\sigma(x, y, z))$

$$\begin{split} &\leq \eta(\sigma(x,\,y,\,w) + \sigma(x,\,w,\,z) + (\sigma(w,\,y,\,z)) \\ &\leq \eta(\sigma(x,\,y,\,w)) + \eta(\sigma(x,\,w,\,z)) + \eta(\sigma(w,\,y,\,z)) \\ &\leq \rho(x,\,y,\,w) + \rho(x,\,w,\,z) + \rho(w,\,y,\,z) \end{split}$$

Hence (X, ρ) is a 2-metric space.

Lemma 3.2: Let (X, σ) be a 2-metric space with $\psi \in \Psi$ then (X, ρ) is complete if and only if (X, σ) is complete.

where
$$\rho(x, y, z) = \eta(\sigma(x, y, z)) = \ln(\psi[\sigma(x, y, z)])$$
.

Proof:

Suppose that (X, σ) is complete and $\{x_n\}$ is a Cauchy sequence of (X, σ) .

i.e
$$\lim_{m,n\to\infty} \rho(x_n,x_m,z) = 0$$
. then we have $\lim_{m,n\to\infty} \eta(\sigma(x_n,x_m,z)) = 0$.

and hence
$$\lim_{m,n\to\infty} \sigma(x_n,x_m,z) = 0$$
 by (η_2) .

More over by completeness of (X, σ) there exists x in X such that $\lim_{n \to \infty} \sigma(x_n, x, z) = 0$ and so

$$\lim_{n \to \infty} \rho(x_n, x, z) = \lim_{n \to \infty} \eta(\sigma(x_n, x, z)) = 0 \text{ by } (\eta_2).$$

Hence (X, ρ) is complete.

Similarly we can prove if (X, ρ) is complete then (X, σ) is complete.

Hence the proof.

Lemma 3.3: Let (X, σ) be a 2-metric space and $T: X \to X$ be a JS type contraction with $\psi \in \Psi$ then T is a Ciric type contraction in (X, ρ) .

Proof: For all x, y, z in X

$$\begin{split} \rho(Tx,Ty,z) &= \eta(\sigma(Tx,Ty,z)) = \ln(\psi[\sigma(Tx,Ty,z)]) \\ &\leq \ln\{[\psi(\sigma(x,y,z))]^a \left[\psi(\sigma(x,Tx,z))\right]^b \left[\psi(\sigma(y,Ty,z))\right]^c \left[\psi(\sigma(x,Ty,z)+\sigma(y,Tx,z))\right]^d\} \\ &\leq a \ln[\psi(\sigma(x,y,z))] + b \ln[\psi(\sigma(x,Tx,z))] + c \ln[\psi(\sigma(y,Ty,z))] + d \left[\ln(\psi(\sigma(x,Ty,z))+\ln(\psi\sigma(y,Tx,z))\right] \\ &\leq a \rho(x,y,z) + b \rho(x,Tx,z) + c \rho(y,Ty,z) + d[\rho(x,Ty,z)+\rho(y,Tx,z)] \text{ for all } x,y,z \in X, \end{split}$$
 that is, (1) is satisfied with respect to the metric ρ , and hence T is a Ciric type contraction in (X,ρ) .

Theorem 3.4

Let (X, σ) be a complete 2-metric space and $T: X \to X$ be a mapping such that the following condition is satisfied.

$$\sigma(Tx, Ty, z) \leq a \ \sigma(x, y, z) + b\sigma(x, Tx, z) + c\sigma(y, Ty, z) + d[\sigma(x, Ty, z) + \sigma(y, Tx, z)] \ \text{for all} \ x, y, z \in X, \\ 0 \leq a + 2d < 1, \ 0 \leq b < 1, \ 0 \leq c + d < 1$$

If T is asymptotically regular at some point of X, then T has a unique fixed point in X.

Proof: We shall assume that T is asymptotically regular at a point $x \in X$ and consider the sequence $\{T^nx\}$. Then $\sigma(T^mx, T^nx, z) \leq a \ \sigma(T^{m-1}x, T^{n-1}x, z) + b \ \sigma(T^{m-1}x, T^mx, z) + c \ \sigma(T^{n-1}x, T^nx, z) + d[\sigma(T^{m-1}x, T^nx, z) + \sigma(T^{n-1}x, T^mx, z)]$

$$\leq a \left[\sigma(T^{m-1}x,\,T^{n-1}x,\,T^nx) + \sigma(T^{m-1}x,\,T^nx,\,z) + \sigma(T^nx,\,T^{n-1}x,\,z) \right] + b\sigma(T^{m-1}x,\,T^mx,\,z) + c \,\,\sigma(T^{n-1}x,\,T^nx,\,z) \\ + d \left[\sigma(T^{m-1}x,\,T^nx,\,T^mx) + \sigma(T^{m-1}x,\,T^mx,\,z) + \sigma(T^mx,\,T^nx,\,z) + \sigma(T^{n-1}x,\,T^mx,\,T^nx) + \sigma(T^{n-1}x,\,T^nx,\,z) \right. \\ \left. + \sigma(T^nx,\,T^mx,\,z) \right] \\ \leq a \left[\sigma(T^nx,\,T^{n-1}x,\,T^{m-1}x) + \sigma(T^{m-1}x,\,T^nx,\,T^mx) + \sigma(T^{m-1}x,\,T^mx,\,z) + \sigma(T^mx,\,T^nx,\,z) + \sigma(T^nx,\,T^{n-1}x,\,z) \right] \\ \left. + b \,\,\sigma(T^{m-1}x,\,T^mx,\,z) + c \,\,\sigma(T^{n-1}x,\,T^nx,\,z) + d \left[\sigma(T^{m-1}x,\,T^nx,\,T^mx) + \sigma(T^{m-1}x,\,T^mx,\,z) + \sigma(T^{m-1}x,\,T^mx,\,z) \right. \\ \left. + \sigma(T^mx,\,T^nx,\,z) + \sigma(T^{n-1}x,\,T^mx,\,T^nx) + \sigma(T^{n-1}x,\,T^nx,\,z) + \sigma(T^{m-1}x,\,T^nx,\,z) \right]$$

$$(1 - a - 2d) \sigma(T^m x, T^n x, z) < (2a + b + 2d) \sigma(T^{m-1} x, T^m x, z) + (2a + c + 2d) \sigma(T^{n-1} x, T^n x, z)$$

$$\sigma(T^mx,\,T^nx,\,z) \leq \frac{(2a+b+2d)}{(1-a-2d)}\,\sigma(T^{m\text{-}1}x,\,T^mx,\,z) + \frac{(2a+c+2d)}{(1-a-2d)}\,\sigma(T^{n\text{-}1}x,\,T^nx,\,z)$$

Since T is asymptotically regular at x.

 $\sigma(T^m x, T^n x, z) \to 0 \text{ as } m, n \to \infty;$

Hence $\{T^nx\}$ is a Cauchy sequence.

Since (X, σ) is complete, there exist a point u in X such that $\lim_{n \to \infty} T^n x = u.$

Suppose that u is not a fixed point of T

Then by (3), we obtain

$$\begin{split} \sigma(u,Tu,z) &\leq \sigma(u,\,Tu,\,T^nx) + \sigma(u,\,T^nx,\,z) + \sigma(T^nx,\,Tu,\,z) \\ &\leq \sigma(u,\,Tu,\,T^nx) + \sigma(u,\,T^nx,\,z) + a\,\sigma(T^{n-1}x,\,u,\,z) + b\,\sigma(T^{n-1}x,\,T^nx,\,z) + c\,\sigma(u,Tu,\,z) \\ &\quad + d\left[\sigma(T^{n-1}x,\,Tu,\,z) + \sigma(u,\,T^nx,\,z)\right] \\ &\leq (1+d)\,\sigma(u,\,T^nx,\,z) + a\,\sigma(T^{n-1}x,\,u,\,z) + b\,\sigma(T^{n-1}x,\,T^nx,\,z) + c\,\sigma(u,\,Tu,\,z) + d\left[\sigma(T^{n-1}x,\,Tu,\,z) + \sigma(u,\,T^nx,\,z)\right] \end{split}$$

Taking the limit as $n \to \infty$, we obtain $\sigma(u, Tu, z) \le (c + d) \sigma(u, Tu, z)$

Which contradicts (c + d) < 1 unless u = Tu,

Suppose T has second fixed point v in X. Then by (3),

We obtain $\sigma(u, v, z) \le (a + 2d) \sigma(u, v, z)$

Since (a + 2d) < 1 it follows that u = v.

Hence the fixed point is unique.

Theorem 3.5 [14]

Let (X, σ) be a complete 2-metric space and T: $X \to X$ be a JS type contraction then T has a unique fixed point. Proof:

Let x in X be an arbitrary point in X, for some $n \in \mathbb{N}$, we have $T^n x = T^{n+1} x$ then $T^n x$ will be a fixed point of T. So, without loss of generality, we can suppose that $\sigma(T^nx, T^{n+1}x, u) > 0$ for all $n \in \mathbb{N}$

Then by (2), we obtain

$$\psi[\sigma(T^nx, T^{n+1}x, z)]$$

$$\begin{split} &\leq \left[\psi(\sigma(T^{n-1}x,\,T^nx,\,z))\right]^a \left[\psi(\sigma(T^{n-1}x,\,T^nx,\,z))\right]^b \left[\psi(\sigma(T^nx,\,T^{n+1}x,\,z))\right]^c \left[\psi(\sigma(T^{n-1}x,\,T^{n+1}x,\,z) + \sigma(T^nx,\,T^nx,\,z))\right]^d \\ &\leq \left[\psi(\sigma(T^{n-1}x,\,T^nx,\,z))\right]^a \left[\psi(\sigma(T^{n-1}x,\,T^nx,\,z))\right]^b \left[\psi(\sigma(T^nx,\,T^{n+1}x,\,z))\right]^c \left[\psi(\sigma(T^{n-1}x,\,T^{n+1}x,\,z) + \sigma(T^{n-1}x,\,T^nx,\,z)\right] \\ &\quad + \sigma(T^nx,\,T^{n+1}x,\,z))\right]^d \\ &\leq \left[\psi(\sigma(T^{n-1}x,\,T^nx,\,z))\right]^{a+b+2d} \left[\psi(\sigma(T^nx,\,T^{n+1}x,\,z))\right]^{c+d} \end{split}$$

$$\leq \left[\psi(\sigma(T^{n-1}x, T^nx, z)) \right]^{a+b+2d} \left[\psi(\sigma(T^nx, T^{n+1}x, z)) \right]^{c+d}$$

$$a+b+2d$$

 $\psi(\sigma(T^n x, T^{n+1} x, z)) \le \left[\psi(\sigma(T^{n-1} x, T^n x, z))\right]^{\frac{n-1}{1-c-d}}, \forall n \in \mathbb{N}$

$$\psi(\sigma(T^n x, T^{n+1} x, z)) \le \left[\psi(\sigma(T^{n-1} x, T^n x, z))\right]^{\frac{a+b+2d}{1-c-d}} \dots \le \left[\psi(\sigma(x, Tx, z))\right]^{\left(\frac{a+b+2d}{1-c-d}\right)^n}$$
Letting $n \to \infty$ in (4), we obtain

$$\psi[\sigma(T^nx, T^{n+1}x, z)] \to 1 \text{ as } n \to \infty$$

which implies from
$$(\psi_2)$$
 that $\lim_{n \to \infty} \sigma(T^n x, T^{n+1} x, z) = 0$ (5)

From condition
$$(\psi_3)$$
, $\exists r \in (0, 1)$ and $\ell \in (0, \infty]$ such that
$$\frac{Lim}{n \to \infty} \frac{\psi(\sigma(T^n x, T^{n+1} x, z) - 1}{\left(\sigma(T^n x, T^{n+1} x, z)\right)^r} = \ell;$$

Suppose that $\ell < \infty$. In this case, let $B = \ell/2 > 0$.

From the definition of the limit, there exists $n_0 \in \mathbb{N}$, such that

$$\left|\frac{\psi(\sigma(T^n x, T^{n+1} x, z) - 1}{\left(\sigma(T^n x, T^{n+1} x, z)\right)^r} - \ell\right| \le B, \text{ for all } n \ge n_0.$$

$$\Rightarrow \frac{\psi(\sigma(T^n x, T^{n+1} x, z) - 1}{\left(\sigma(T^n x, T^{n+1} x, z)\right)^r} \ge \ell - B = B,$$

then $n[\sigma(T^nx, T^{n+1}x, z)]^r \le nA[\psi(\sigma(T^nx, T^{n+1}x, z)) - 1]$, where A = 1/B.

Suppose now that $\ell = \infty$, let B > 0 be an arbitrary positive number.

From the definition of the limit, there exists $n_0 \in \mathbb{N}$, such that

$$\frac{\psi(\sigma(T^n x, T^{n+1} x, z) - 1}{\left(\sigma(T^n x, T^{n+1} x, z)\right)^r} \ge B,$$

$$\Rightarrow \quad n[\sigma(T^n x, T^{n+1} x, z)]^r \le nA \left[\psi(\sigma(T^n x, T^{n+1} x, z)) - 1\right], \text{ where } A = 1/B, \text{ for all } n \ge n_0.$$

Thus in all cases $\exists A > 0$ and $n_0 \in \mathbb{N}$ such that

$$n[\sigma(T^{n}x, T^{n+1}x, z)]^{r} \le nA[\psi(\sigma(T^{n}x, T^{n+1}x, z)) - 1],$$
 for all $n \ge n_0$.

Using (4), we obtain

$$n[\sigma(T^{n}x, T^{n+1}x, z)]^{r} \le nA \left[\psi(\sigma(x, Tx, z)]^{\left(\frac{a+b+2d}{1-c-d}\right)^{n}} - 1 \right)$$

$$(6)$$

Letting $n \to \infty$, in (6), we obtain $\lim_{n \to \infty} n[\sigma(T^n x, T^{n+1} x, z)]^r = 0$. Thus, there exists $n_1 \in \mathbb{N}$ such that

$$\sigma(T^n x, T^{n+1} x, z) \le \left(\frac{1}{\sqrt{1/r}}\right)$$
 for all $n \ge n_1$.

Now for $m > n > n_1$, we have

$$\sigma(T^n x, T^m x, z) \le \sum_{i=n}^{m-1} \sigma(T^i x, T^{i+1} x, z) \le \sum_{i=n}^{m-1} \frac{1}{(i)^{\frac{1}{r}}},$$

Since 0 < r < 1 then $\sum_{i=n}^{m-1} \frac{1}{(i)^r}$ converges and hence $\sigma(T^n x, T^m x, z) \to 0$ as $m, n \to \infty$.

Thus {Tⁿx} is a Cauchy sequence.

Since (X, σ) is complete, there exist a point $u \in X$ such that $\lim_{n \to \infty} T^n x = u$.

Suppose that u is not a fixed point of T

```
Then by (2), we obtain  \psi(\sigma(u,Tu,z)) \leq \psi[\sigma(u,T^nx,z) + \sigma(T^nx,Tu,z) + \sigma(u,Tu,T^nx)]   \leq \psi(\sigma(u,T^nx,z)) \ \psi(\sigma(T^nx,Tu,z)) \ \psi(\sigma(u,Tu,T^nx))   \leq \psi(\sigma(u,T^nx,z)) \ \psi(\sigma(u,Tu,T^nx)) \ [\psi(\sigma(T^{n-1}x,u,z))]^a \ [\psi(\sigma(T^{n-1}x,T^nx,z))]^b \ [\psi(\sigma(u,Tu,z))]^c   [\psi(\sigma(T^{n-1}x,Tu,z) + \sigma(u,T^nx,z)]^d  Taking limit as n\to\infty  \psi(\sigma(u,Tu,z)) \leq [\psi(\sigma(u,Tu,z))]^{c+d}.  which is contradiction, since 0 \leq c+d < 1. \Rightarrow \sigma(u,Tu,z) = 0.  i.e Tu=u.  Suppose T has second fixed point v in X then by (2), we obtain  \psi(\sigma(u,v,z)) = \psi(\sigma(Tu,Tv,z)) = \psi(\sigma(Tu,Tv,z)) = (\psi(\sigma(u,v,z))]^a \ [\psi(\sigma(u,Tu,z))]^b \ [\psi(\sigma(v,Tv,z))]^c \ [\psi(\sigma(u,Tv,z) + \sigma(v,Tu,z))]^d   \leq [\psi(\sigma(u,v,z))]^{a+2d}.  which is contradiction, since 0 \leq a+2d < 1. \Rightarrow \sigma(u,v,z) = 0.  It follows that u=v.  Hence the fixed point is unique.
```

Theorem 3.6

Let (X, σ) be a complete 2-metric space and $T: X \to X$ be a JS type contraction. If T is asymptotically regular at some point of X, then T has a unique fixed point in X.

Proof:

Since (X, σ) is Complete 2-metric space. (X, ρ) is also a Complete 2-metric space by Lemma 3.1 and Lemma 3.2: Also T is a Ciric type contraction in (X, ρ) by Lemma 3.3,

Therefore T has a unique fixed point in X by Theorem 3.4:, The proof is complete.

4. REFERENCES

- [1] Kannan, R: Some results on fixed points, Bull. Calcutta. Math. Soc., 60, pp.71-76. 1968
- [2] Baskaran. B and Rajesh. C, Fixed point theorems in complete 2 metric spaces by using a continuous control function, Global Journal of Pure and Applied Mathematics, vol. 12, no. 2, pp.25 28, 2016
- [3] Baskaran. B and Rajesh. C, Some Results on Fixed points of Asymptotically Regular Mappings, International Journal of Mathematical Analysis, vol. 8, no. 50, pp.2469 2474. 2014
- [4] Hussain, N, Parvaneh, V, Samet, B, Vetro, C: Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2015, 185, 2015
- [5] Reich,S: Some remarks concerning contraction mappings. Can.Math.Bull. 14, pp.121-124, 1971
- [6] 'Ciri'c, L: Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Belgr.)12 (26), pp.19-26, 1971.
- [7] 'Ciri'c, L: A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 45(2), pp.267-273, 1974.
- [8] Jleli, M, Samet, B: A new generalization of the Banach contraction principle J. Inequal. Appl. 2014, 38, 2014.
- [9] Aydi, H, Karapinar, E, Samet, B: Remarks on some recent fixed point theorems. Fixed Point Theory Appl. 76 2012.

- [10] Aydi,H, Karapinar,E, Samet,B: Fixed points for generalized (α,ψ) -contractions on generalized metric spaces. J.Inequal.Appl. 2014, 229, 2014
- [11] Shujun Jiang, Zhilong Li, BoškoDamjanovi'c: A note on 'Some fixed point theorems for generalized contractive mappings in complete metric spaces' Fixed Point Theory Appl. 62, 2016
- [12] Wardowski,D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 94, 2012.
- [13] Suzuki, T: A new type of fixed point theorem in metric spaces. Nonlinear Anal. Theory Methods Appl. 71(11), pp.5313-5317, 2009
- [14] Hussain, N, Đori´c, D, Kadelburg, Z, Radenovi´c, S: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 126, 2012.
- [15] Jaggi, D S: Some unique fixed point theorems. Indian J. Pure Appl. Math. 8(2), pp.223-230, 1977
- [16] Sehie Park, A unified approach to fixed points of contractive maps, J Korean Math. Soc. 16(2),,pp.95-105, 1980.
- [17] Rajesh. C and Baskaran. B, Generalization of common fixed point theorems for weakly commuting maps in complete 2 metric spaces, Global Journal of Pure and Applied Mathematics, vol. 12, no. 2, pp.331 335, 2016